Continuously Mining Sliding Window Trend Clusters in a Sensor Network
Abstract
The trend cluster discovery retrieves areas of spatially close sensors which measure a numeric random field having a prominent data trend along a time horizon. We propose a computation preserving algorithm which employees an incremental learning strategy to continuously maintain sliding window trend clusters across a sensor network. Our proposal reduces the amount of data to be processed and saves the computation time as a consequence. An empirical study proves the effectiveness of the proposed algorithm to take under control computation cost of detecting sliding window trend clusters.
Autore Pugliese
Tutti gli autori
-
APPICE A.;MALERBA D.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2012
ISSN
0302-9743
ISBN
978-3-642-32596-0
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
2
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social