Constrained Schroedinger-Poisson System with Non Constant Interaction
Abstract
In this paper we are dealing with a Schroedinger–Maxwell system in a bounded domain of R^3; the unknowns are the charged standing waves in equilibrium with a purely electrostatic potential. The system is not autonomous, in the sense that the coupling depends on a function q = q(x). The non-homogeneous Neumann boundary condition on φ prescribes the flux of the electric field F and gives rise to a necessary condition. On the other hand we consider the usual normalizing condition for u. Under mild assumptions involving F and the function q, we prove that this problem has a variational framework: its solutions can be characterized as constrained critical points. Then, by means of the Ljusternick–Schnirelmann theory, we get the existence of infinitely many solutions.
Anno di pubblicazione
2013
ISSN
0219-1997
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
3
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social