Constrained Schroedinger-Poisson System with Non Constant Interaction

Abstract

In this paper we are dealing with a Schroedinger–Maxwell system in a bounded domain of R^3; the unknowns are the charged standing waves in equilibrium with a purely electrostatic potential. The system is not autonomous, in the sense that the coupling depends on a function q = q(x). The non-homogeneous Neumann boundary condition on φ prescribes the flux of the electric field F and gives rise to a necessary condition. On the other hand we consider the usual normalizing condition for u. Under mild assumptions involving F and the function q, we prove that this problem has a variational framework: its solutions can be characterized as constrained critical points. Then, by means of the Ljusternick–Schnirelmann theory, we get the existence of infinitely many solutions.


Autore Pugliese

Tutti gli autori

  • PISANI L.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2013

ISSN

0219-1997

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

3

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile