Cointegrating Jumps: an Application to Energy Facilities
Abstract
Based on the concept of self-decomposable random variables we discuss the application of a model for a pair of dependent Poisson processes to energy facilities. Due to the resulting structure of the jump events we can see the self-decomposability as a form of cointegration among jumps. In the context of energy facilities, the application of our approach to model power or gas dynamics and to evaluate transportation assets seen as spread options is straightforward. We study the applicability of our methodology first assuming a Merton market model with two underlying assets; in a second step we consider price dynamics driven by an exponential mean-reverting Geometric Ornstein-Uhlenbeck plus compound Poisson that are commonly used in the energy field. In this specific case we propose a price spot dynamics for each underlying that has the advantage of being treatable to find non-arbitrage conditions. In particular we can find close-form formulas for vanilla options so that the price and the Greeks of spread options can be calculated in close form using the Margrabe formula [5] (if the strike is zero) or some well known approximations as in Deng et al. [8].
Autore Pugliese
Tutti gli autori
-
CUFARO PETRONI N.;SABINO P.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2015
ISSN
Non Disponibile
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social