Clustering Spatio-Temporal Data Streams

Abstract

A spatio-temporal data stream is a sequence of time-stamped geo-referenced data elements which arrive at consecutive time points. In addition to the spatial and temporal dimensions which are information bearing, stream poses further challenges to data mining, which are avoiding multiple scans of the entire data sets, optimizing memory usage, and mining only the most recent patterns. In this paper, we address the challenges of mining spatiotemporal data streams for a new class of space-time patterns, called trend-clusters. These patterns combine spatial clustering and trend discovery in stream environments. In particular, we propose a novel algorithm, called TRUST, which allows to retrieve groups of spatially continuous geo-referenced data which variate according to a close trend polyline in the recent window past. Experiments demonstrate the effectiveness of the proposed algorithm.


Tutti gli autori

  • APPICE A.;MALERBA D.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2010

ISSN

Non Disponibile

ISBN

978-88-7488-369-1


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile