Clustering Spatio-Temporal Data Streams
Abstract
A spatio-temporal data stream is a sequence of time-stamped geo-referenced data elements which arrive at consecutive time points. In addition to the spatial and temporal dimensions which are information bearing, stream poses further challenges to data mining, which are avoiding multiple scans of the entire data sets, optimizing memory usage, and mining only the most recent patterns. In this paper, we address the challenges of mining spatiotemporal data streams for a new class of space-time patterns, called trend-clusters. These patterns combine spatial clustering and trend discovery in stream environments. In particular, we propose a novel algorithm, called TRUST, which allows to retrieve groups of spatially continuous geo-referenced data which variate according to a close trend polyline in the recent window past. Experiments demonstrate the effectiveness of the proposed algorithm.
Autore Pugliese
Tutti gli autori
-
APPICE A.;MALERBA D.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2010
ISSN
Non Disponibile
ISBN
978-88-7488-369-1
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social