Cation ordering over short range and long range scales in the MgAl2O4-CuAl2O4 series

Abstract

A multi-analytical approach using electron microprobe analysis, X‑ray structural refinement, and optical absorption spectroscopy was applied to characterize short-range and long-range structures of synthetic spinel single crystals along the MgAl2O4-CuAl2O4 solid-solution series. Site populations, derived from the results of site-scattering refinement and stereochemical analysis, show that the tetrahedrally coordinated site (T) is mainly populated by Mg and Cu2+, while the octahedrally coordinated site (M) is dominated by Al. Crystals also show a significant degree of inversion, i.e., occurrence of Al at T counterbalanced by occurrence of divalent cations at M, which increases slightly from 0.24 to 0.29 for the highest Cu2+ contents. Short-range information derived from optical spectra suggests that the local TCu2+-O distances remain constant at increasing Cu2+ content, whereas local MCu2+-O distances are ca. 0.02 Å shorter in Cu-poor MgAl2O4 spinels as compared to MCu2+-O distances in end-member CuAl2O4. The observed splitting of an absorption band, at ca. 7000 cm–1, caused by electron transitions in TCu2+ as well as the anomalous broadness of an absorption band, at ca. 13 500 cm–1, caused by electron transitions in MCu2+ indicates the occurrence of local Jahn-Teller distortions at T and M. Long-range information, however, shows no violation of Fd3m symmetry. From refinements of our single-crystal XRD data we could for the first time derive for a cubic spinel phase a MCu2+-O distance of 2.080 Å and a TCu2+-O of 1.960 Å. The very limited variations in the unit-cell parameter a from 8.079 to 8.087 Å are mainly related to the disordering of Al. Because of the very similar size of Cu2+ and Mg at the T and M sites, the spinel structure responds to the Cu2+ → Mg substitution by increasing cation disordering in such a manner that mean M-O distances remain constant and the mean T-O distances decrease slightly. This results in increasing length of shared octahedral edges and thereby increase of the octahedral cation-cation repulsion. In line with other studies, the importance of steric factors for controlling the cation distributions in the spinel structure is demonstrated to be valid also in the MgAl2O4-CuAl2O4 solid-solution series.


Autore Pugliese

Tutti gli autori

  • FREGOLA R.A.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2012

ISSN

0003-004X

ISBN

Non Disponibile


Numero di citazioni Wos

10

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

10

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile