Ash from the Eyjafjallajökull eruption (Iceland): Fragmentation processes and aerodynamic behavior

Abstract

The fragmentation process and aerodynamic behavior of ash from the Eyjafjallajökull eruption of 2010 are investigated by combining grain-size, Scanning Electron Microscopy (SEM), and quantitative particle morphology. Ash samples were collected on land in Iceland at 3–55 km distance from the volcanic vent, and represent various phases of the pulsating eruption. The grain size is fine even for deposits close to the vent, suggesting that the parent particle population at fragmentation consisted of a substantial amount of fine ash. SEM investigation reveals that ash produced during the first phase of the eruption consists of juvenile glass particles showing key features of magma-water interaction, suggesting that phreatomagmatism played a major role in the fragmentation of a vesicle-poor magma. In the last phase of the eruption, fragmentation was purely magmatic and resulted from stress-induced reaction of a microvesicular, fragile melt. The shape of ash, as determined by quantitative morphology analysis, is highly irregular, rendering the settling velocity quite low. This makes transportation by wind much easier than for other more regularly shaped particles of sedimentary origin. We conclude that the combination of magma’s fine brittle fragmentation and irregular particle shape was the main factor in the extensive atmospheric circulation of ash from the mildly energetic Eyjafjallajökull eruption.


Tutti gli autori

  • MELE D.;DELLINO P.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2012

ISSN

0148-0227

ISBN

Non Disponibile


Numero di citazioni Wos

51

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

63

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile