Artificial Classifier Generation for Multi-expert System Evaluation

Abstract

The evaluation of combination methods for multi-classifier systems is a difficult problem. In many cases multi-classifier combination methods are too complex to be formally studied and the experimental approach is the unique possible strategy. Of course, in order to simulate a multitude of real working conditions, sets of artificial classifiers with diverse characteristics must be generated. This paper presents an effective technique for generating sets of artificial classifiers with different characteristics both at the individual-level (i.e. recognition performance) and at the collective-level (i.e. degree of similarity). In the experimental tests, sets of artificial classifiers simulating different working conditions are generated and the performances of abstract-level combination methods are estimated. The results points out the effectiveness of the new technique for generating sets of artificial classifiers with different characteristics and their usefulness in estimating the performances of combination methods.


Tutti gli autori

  • IMPEDOVO D.;PIRLO G.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2010

ISSN

Non Disponibile

ISBN

978-0-7695-4221-8


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

7

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile