Analitic propagation for nonlinear weakly hyperbolic systems

Abstract

The propagation of analyticity for sufficiently smooth solutions to either strictly hyperbolic, or smoothly symmetrizable nonlinear systems, dates back to Lax (Comm. on Pure Appl. Math. 1953) and Alinhac and Métivier (Invent. Math. 1984). Here we consider the general case of a system with real, possibly multiple, characteristics, and we ask which regularity should be a priori required of a given solution in order that it enjoys the propagation of analyticity. By using the technique of the quasi-symmetrizer of a hyperbolic matrix, we prove, in the one-dimensional case, the propagation of analyticity for those solutions which are Gevrey functions of order s for some s < m/(m − 1), m being the maximum multiplicity of the characteristics.


Autore Pugliese

Tutti gli autori

  • TAGLIALATELA G.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2010

ISSN

0360-5302

ISBN

Non Disponibile


Numero di citazioni Wos

1

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

2

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile