An Intelligent Technique for Forecasting Spatially Correlated Time Series
Abstract
The analysis of spatial autocorrelation has defined a new paradigm in ecology. Attention to spatial pattern leads to insights that would otherwise overlooked, while ignoring space may lead to false conclusions about ecological relationships. In this paper, we propose an intelligent forecasting technique, which explicitly accounts for the property of spatial autocorrelation when learning linear autoregressive models (ARIMA) of spatial correlated ecologic time series. The forecasting algorithm makes use of an autoregressive statistical technique, which achieves accurate forecasts of future data by taking into account temporal and spatial dimension of ecologic data. It uses a novel spatial-aware inference procedure, which permits to learn the autoregressive model by processing a time series in a neighborhood (spatial lags). Parameters of forecasting models are jointly learned on spatial lags of time series. Experiments with ecologic data investigate the accuracy of the proposed spatial-aware forecasting model with respect to the traditional one.
Autore Pugliese
Tutti gli autori
-
APPICE A.;MALERBA D.;PRAVILOVIC S.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2013
ISSN
0302-9743
ISBN
978-3-319-03523-9
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
7
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social