An abstract three critical points theorem and applications

Abstract

In this paper we state an abstract multiplicity theorem which generalizes the well known Pucci-Serrin result as it allows one to prove the existence of a third critical point for functionals which are smooth in a Banach space but satisfy a kind of Palais-Smale condition with respect to a weaker norm. This result applies for proving that, under suitable assumptions, the functional \[ J_\lambda(u) = \int_\Omega A(x,u)(|\nabla u|^p - \lambda |u|^p)dx + \int_\Omega G(x,u) dx \] admits at least three distinct critical points in the Banach space $W^{1,p}_0(\Omega) \cap L^\infty(\Omega)$ but if $\lambda$ is large enough.


Autore Pugliese

Tutti gli autori

  • CANDELA A.M.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2012

ISSN

Non Disponibile

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile