ADAPTIVE ZONING DESIGN BY SUPERVISED LEARNING USING MULTI-OBJECTIVE OPTIMIZATION
Abstract
Zoning is a widespread feature extraction technique for handwritten digit recognition, since it is able to handle handwritten pattern variability. Static techniques for zoning design have recently been superseded by adaptive techniques, in which zoning design is considered as the result of an optimization procedure. This paper presents a new learning strategy to optimal zoning design using multi-objective genetic algorithm. More precisely, the nondominant sorting genetic algorithm II (NSGA II) has been applied to define, in a single process, both the optimal number of zones and the optimal zones for the Voronoi-based zoning method. The experimental tests, carried out in the field of handwritten digit recognition, show the effectiveness of this new approach with respect to traditional dynamic approaches for zoning design, based on single-objective optimization techniques.
Anno di pubblicazione
2014
ISSN
1469-0268
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social