Adaptive Score Normalization for Multi-Classifier Systems

Abstract

This paper introduces a new score normalization technique - based on Dynamic Time Warping (DTW) - for output integration in multi-classifier systems. More precisely, DTW is used to match the score cumulative distribution of each individual classifier against a standard cumulative distribution. The warping function allows optimal alignment of the scores provided by the individual classifiers with the scores on the standard cumulative distribution. Furthermore, in order to adapt the normalization process to the behaviour of the individual classifiers and to the decision fusion rule, a new class of fuzzy cumulative distributions is introduced and a genetic approach is used to select the optimal distribution to be used as standard cumulative distribution for score normalization. The experimental tests report better results for the fuzzy normalization technique than for those obtained with other approaches present in the literature.


Tutti gli autori

  • IMPEDOVO D.;PIRLO G.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2012

ISSN

1070-9908

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

6

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile