Adaptive Score Normalization for Multi-Classifier Systems
Abstract
This paper introduces a new score normalization technique - based on Dynamic Time Warping (DTW) - for output integration in multi-classifier systems. More precisely, DTW is used to match the score cumulative distribution of each individual classifier against a standard cumulative distribution. The warping function allows optimal alignment of the scores provided by the individual classifiers with the scores on the standard cumulative distribution. Furthermore, in order to adapt the normalization process to the behaviour of the individual classifiers and to the decision fusion rule, a new class of fuzzy cumulative distributions is introduced and a genetic approach is used to select the optimal distribution to be used as standard cumulative distribution for score normalization. The experimental tests report better results for the fuzzy normalization technique than for those obtained with other approaches present in the literature.
Autore Pugliese
Tutti gli autori
-
IMPEDOVO D.;PIRLO G.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2012
ISSN
1070-9908
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
6
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social