A Temporal Data Mining Framework for Analyzing Longitudinal Data
Abstract
Longitudinal data consist of the repeated measurements of some variables which describe a process (or phenomenon) over time. They can be analyzed to unearth information on the dynamics of the process. In this paper we propose a temporal data mining framework to analyze these data and acquire knowledge, in the form of temporal patterns, on the events which can frequently trigger particular stages of the dynamic process. The application to a biomedical scenario is addressed. The goal is to analyze biosignal data in order to discover patterns of events, expressed in terms of breathing and cardiovascular system time-annotated disorders, which may trigger particular stages of the human central nervous system during sleep.
Autore Pugliese
Tutti gli autori
-
LOGLISCI C.;MALERBA D.;CECI M.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2011
ISSN
0302-9743
ISBN
978-3-642-23090-5
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
1
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social