A pseudo-spectral scheme for the approximate solution of a time-fractional diffusion equation
Abstract
We consider an initial-boundary-value problem for a time-fractional diffusion equation with initial condition u0(x) and homogeneous Dirichlet boundary conditions in a bounded interval [0, L]. We study a semidiscrete approximation scheme based on the pseudo-spectral method on Chebyshev-Gauss-Lobatto nodes. In order to preserve the high accuracy of the spectral approximation we use an approach based on the evaluation of the Mittag-Leffler function on matrix arguments for the integration along the time variable. Some examples are presented and numerical experiments illustrate the effectiveness of the proposed approach
Anno di pubblicazione
2015
ISSN
0020-7160
ISBN
Non Disponibile
Numero di citazioni Wos
10
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
12
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social