A Logic Framework for Incremental Learning of Process Models
Abstract
Standardized processes are important for correctly carrying out activities in an organization. Often the procedures they describe are already in operation, and the need is to understand and formalize them in a model that can support their analysis, replication and enforcement. Manually building these models is complex, costly and error-prone. Hence, the interest in automatically learning them from examples of actual procedures. Desirable options are incrementality in learning and adapting the models, and the ability to express triggers and conditions on the tasks that make up the workflow. This paper proposes a framework based on First-Order Logic that solves many shortcomings of previous approaches to this problem in the literature, allowing to deal with complex domains in a powerful and flexible way. Indeed, First-Order Logic provides a single, comprehensive and expressive representation and manipulation environment for supporting all of the above requirements. A purposely devised experimental evaluation confirms the effectiveness and efficiency of the proposed solution.
Autore Pugliese
Tutti gli autori
-
ESPOSITO F.;FERILLI S.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2013
ISSN
0169-2968
ISBN
Non Disponibile
Numero di citazioni Wos
7
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
14
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social