A Dynamical System Approach for Continuous Nonnegative Matrix Factorization
Abstract
Nonnegative matrix factorization is a linear dimensionality reduction technique used for decomposing high-dimensional nonnegative data matrices for extracting basic and latent features. This technique plays fundamental roles in music analysis, signal processing, sound separation, and spectral data analysis. Given a time-varying objective function or a nonnegative time-dependent data matrix Y(t), the nonnegative factors of Y(t) can be obtained by taking the limit points of the trajectories of the corresponding ordinary differential equations. When the data are time dependent, it is natural to devise factorization techniques that capture the time dependency. To achieve this, one needs to solve continuous-time dynamical systems derived from iterative optimization schemes and construct nonnegative matrix factorization algorithms based on the solution curves. This article presents continuous nonnegative matrix factorization methods based on the solution of systems of ordinary differential equations associated with time-dependent data. In particular, we propose two new continuous-time algorithms based on the Kullback–Leibler divergence and the Amari α -divergence.
Autore Pugliese
Tutti gli autori
-
DEL BUONO N.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2017
ISSN
1660-5446
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social