A comparison of Lexicon-based approaches for Sentiment Analysis of microblog posts
Abstract
The exponential growth of available online information provides computer scientists with many new challenges and opportunities. A recent trend is to analyze people feelings, opinions and orientation about facts and brands: this is done by exploiting Sentiment Analysis techniques, whose goal is to classify the polarity of a piece of text according to the opinion of the writer. In this paper we propose a lexicon-based approach for sentiment classication of Twitter posts. Our approach is based on the exploitation of widespread lexical resources such as SentiWordNet, WordNet-Affect, MPQA and SenticNet. In the experimental session the eectiveness of the approach was evaluated against two state-of-the-art datasets. Preliminary results provide interesting outcomes and pave the way for future research in the area.
Autore Pugliese
Tutti gli autori
-
MUSTO C.;SEMERARO G.;POLIGNANO M.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2014
ISSN
1613-0073
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
19
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social