On the Numerical Computation of Transition Matrix pth Root
Abstract
Transition matrices arise in a wide class of engineering problems especially in mathematical models using Markov chains. Usually they describe the transition probabilities of a vector state at time $t$ to the same state vector at time $t+Delta t$, where $Delta t$ is the shortest period over which a transition matrix can be estimated. If a short term transition matrix is needed it can be obtained by computing a $p$th root. For example in risk management of portfolio the company's credit ratings are recorded yearly, thus to define, at the end of the year, a transition matrix with all the recorded information. However, investment horizon is shorter than a year, thus to require the computation of the matrix $p$th root. In this paper we consider the numerical computation of the $p$th root of a transition matrix. The aim of the paper is to highlight the properties of some numerical methods preserving the geometric peculiarities of the pth root of a transition matrix.
Autore Pugliese
Tutti gli autori
-
Politi T , Popolizio M
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2014
ISSN
Non Disponibile
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social