On the Numerical Computation of Transition Matrix pth Root

Abstract

Transition matrices arise in a wide class of engineering problems especially in mathematical models using Markov chains. Usually they describe the transition probabilities of a vector state at time $t$ to the same state vector at time $t+Delta t$, where $Delta t$ is the shortest period over which a transition matrix can be estimated. If a short term transition matrix is needed it can be obtained by computing a $p$th root. For example in risk management of portfolio the company's credit ratings are recorded yearly, thus to define, at the end of the year, a transition matrix with all the recorded information. However, investment horizon is shorter than a year, thus to require the computation of the matrix $p$th root. In this paper we consider the numerical computation of the $p$th root of a transition matrix. The aim of the paper is to highlight the properties of some numerical methods preserving the geometric peculiarities of the pth root of a transition matrix.


Autore Pugliese

Tutti gli autori

  • Politi T , Popolizio M

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2014

ISSN

Non Disponibile

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile