Modelling and Simulations in Electronic and Optoelectronic Engineering
Abstract
Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models. This book collects five chapters and provides a detailed guide for the design and test of electronic and optoelectronic devices allowing engineers to simulate individual devices and electronic circuits and performing a large number of different analyses needed for tasks such as verification of circuit designs and prediction of circuit performance. A particular attention is devoted to scaling of transistors, which in the last half of century has been the driving force for electronics. A wide variety of devices are also being explored to complement or even replace silicon transistors at molecular scales. Similarities between nanoscale and microscale transistors exist, but nanotransistors also behave in drastically different ways. For example, ballistic transport and quantum effects become much more important. Moreover the downscaling of power integrated devices and the increase of the dissipated power density emphasise the importance of a proper thermal analysis during the design process. Particularly in GaAs technology, one of the main problems to overcome is the low thermal conductivity of the semiconductor, which focuses the designer’s interest both on the device layout and package thermal optimization when good reliability is to be achieved. Ideal as a reference for professional engineers or as a text for courses in electronic and optoelectronic device modelling, the proposed book presents: • a combination of background device physics and technology; • a review of existing device models; • a set of new and improved models compatible with the most advanced technology, which I have already proposed in literature during a period of over thirty years of my research activity; • descriptions of device models and examples of circuit simulations. In the first chapter an analytical model to optimize the thermal and electrical layout for multilayer structure electronic devices is reviewed. The model is based on the solution to the non-linear 3-D heat equation. The thermal solution is achieved by the Kirchhoff transform and the 2-D Fourier transform. In the second chapter the authors review a very accurate and fast model of Photonic Band-Gap (PBG) structure characterized by a two-dimensional (2D) periodic change of the refractive index and finite height, therefore named quasi 3D PBG. The model is based on the Floquet-Bloch formalism and allows to find all the propagation characteristics, including the space harmonics and the total field distribution, the propagation constants, the guided and radiated p
Anno di pubblicazione
2011
ISSN
Non Disponibile
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social