Weighted L^p-estimates for elliptic equations with measurable coefficients in nonsmooth domains
Abstract
We obtain a global weighted $L^p$ estimate for the gradient of the weak solutions to divergence form elliptic equations with measurable coefficients in a nonsmooth bounded domain. The coefficients are assumed to be merely measurable in one variable and to have small BMO semi-norms in the remaining variables, while the boundary of the domain is supposed to be Reifenberg flat, which goes beyond the category of domains with Lipschitz continuous boundaries. As consequence of the main result, we derive global gradient estimate for the weak solution in the framework of the Morrey spaces which implies global H"older continuity of the solution."
Autore Pugliese
Tutti gli autori
-
BYUN S.-S. , PALAGACHEV D.K.
Titolo volume/Rivista
POTENTIAL ANALYSIS
Anno di pubblicazione
2014
ISSN
0926-2601
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
9
Ultimo Aggiornamento Citazioni
2017-04-22 03:20:59
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social