Morrey regularity of solutions to quasilinear elliptic equations over Reifenberg flat domains
Abstract
We derive global gradient estimates in Morrey spaces for the weak solutions to discontinuous quasilinear elliptic equations related to important variational problems arising in models of linearly elastic laminates and composite materials. The principal coefficients of the quasilinear operator are supposed to be merely measurable in one variable and to have small-BMO seminorms in the remaining orthogonal directions, and the nonlinear terms are subject to controlled growth conditions with respect to the unknown function and its gradient. The boundary of the domain considered is Reifenberg flat which includes boundaries with rough fractal structure. As outgrowth of the main result we get global Hoelder continuity of the weak solution with exact value of the corresponding exponent.
Autore Pugliese
Tutti gli autori
-
BYUN S.-S. , PALAGACHEV D.K.
Titolo volume/Rivista
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
Anno di pubblicazione
2014
ISSN
0944-2669
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
7
Ultimo Aggiornamento Citazioni
2017-04-22 03:20:59
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social