On the Laguerre Rational Approximation to Fractional Discrete Derivative and Integral Operators
Abstract
This note ties the Laguerre continued fraction expansion of the Tustin fractional discrete-time operator to irreducible Jacobi tri-diagonal matrices. The aim is to prove that the Laguerre approximation to the Tustin fractional operator $s^{-nu}$ (or $s^{nu}$) is stable and minimum-phase for any value $0 < nu < 1$ of the fractional order $nu$. It is also shown that zeros and poles of the approximation are interlaced and lie in the unit circle of the complex $z$-plane, keeping a special symmetry on the real axis. The quality of the approximation is analyzed both in the frequency and time domain. Truncation error bounds of the approximants are given.
Autore Pugliese
Tutti gli autori
-
Maione G
Titolo volume/Rivista
IEEE TRANSACTIONS ON AUTOMATIC CONTROL
Anno di pubblicazione
2013
ISSN
0018-9286
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
18
Ultimo Aggiornamento Citazioni
2017-04-23 03:20:56
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social