Large-eddy simulations of a mixed-flow pump at off-design conditions
Abstract
reduced flow-rates in turbopumps produce significant unsteady phenomena, characterized by separation and back-flow. In this study an LES approach coupled with an immersed-boundary methodology is utilized to investigate the changes in the flow physics, when compared to nominal flow-rates. The present methodology has been already validated for the design case through comparison with PIV experiments in the literature. It will be shown that for a reduced flow rate (40% of the design one) separation phenomena are generated on the suction side of the rotor blades and on the pressure side of the stator ones. Significant spanwise non-uniformity is produced in the diffuser channels, with a displacement of the flow towards the hub side and back-flow on the shroud side. The values of turbulent kinetic energy are increased by an order of magnitude at off-design conditions and the main source of turbulence is not anymore the flow from the suction side and the trailing edge of the rotor blades: most turbulence is generated now at the leading edge of the diffuser blades. The increased interaction between rotating and stationary parts implies also a stronger dependence of the flow features on the relative position between impeller and diffuser blades.
Autore Pugliese
Tutti gli autori
-
Posa A. , Lippolis A. D. , Balaras E.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2014
ISSN
Non Disponibile
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social