Large-eddy simulations of a mixed-flow pump at off-design conditions

Abstract

reduced flow-rates in turbopumps produce significant unsteady phenomena, characterized by separation and back-flow. In this study an LES approach coupled with an immersed-boundary methodology is utilized to investigate the changes in the flow physics, when compared to nominal flow-rates. The present methodology has been already validated for the design case through comparison with PIV experiments in the literature. It will be shown that for a reduced flow rate (40% of the design one) separation phenomena are generated on the suction side of the rotor blades and on the pressure side of the stator ones. Significant spanwise non-uniformity is produced in the diffuser channels, with a displacement of the flow towards the hub side and back-flow on the shroud side. The values of turbulent kinetic energy are increased by an order of magnitude at off-design conditions and the main source of turbulence is not anymore the flow from the suction side and the trailing edge of the rotor blades: most turbulence is generated now at the leading edge of the diffuser blades. The increased interaction between rotating and stationary parts implies also a stronger dependence of the flow features on the relative position between impeller and diffuser blades.


Tutti gli autori

  • Posa A. , Lippolis A. D. , Balaras E.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2014

ISSN

Non Disponibile

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile