The effect of context on misclassification costs in e-commerce applications
Abstract
The performance of customer behavior models depends on both the predictive accuracy and the cost of incorrect predictions. Previous research showed that including context in the customer behavior models can improve the accuracy. Improving the accuracy does not necessarily mean that the misclassification cost decreases. The aim of this paper is to understand whether including context in a predictive model reduces the misclassification costs and in which conditions this happens. Experimental analyses were done by varying the market granularity, the dependent variable and the context granularity. The results show that context leads to a decrease in the misclassification cost when the unit of analysis is the single customer or the micro-segment. The exceptions may occur when the unit of analysis is a segment. These findings have significant implications for companies that have to decide whether to gather context and how to exploit it best when they build predictive models.
Autore Pugliese
Tutti gli autori
-
Lombardi S , Gorgoglione M , Panniello U
Titolo volume/Rivista
EXPERT SYSTEMS WITH APPLICATIONS
Anno di pubblicazione
2013
ISSN
0957-4174
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social