A lower bound estimate of the critical load in bifurcation analysis for incompressible elastic solids

Abstract

A procedure for obtaining a lower bound estimate of the critical load for arbitrary incompressible hyperelastic solids is presented. By considering a lower bound estimate for the Hadamard functional based on the Korn inequality, we establish sufficient conditions for the infinitesimal stability of a distorted configuration. We then determine an optimal lower bound estimate of the critical load in a monotonic loading process and specialize our procedure to the case of homogeneous deformations of incompressible, hyperelastic bodies. We apply our procedure to some representative dead-load boundary value problems for Mooney–Rivlin elastic solids and discuss its effectiveness and handiness for applications by comparing our results to other estimates.


Tutti gli autori

  • FOTI, Pilade , FRADDOSIO, Aguinaldo , MARZANO, Salvatore , PICCIONI, Mario Daniele , FOSDICK, Roger Lee

Titolo volume/Rivista

MATHEMATICS AND MECHANICS OF SOLIDS


Anno di pubblicazione

2014

ISSN

1081-2865

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

7

Ultimo Aggiornamento Citazioni

2017-04-23 03:20:56


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile