A lower bound estimate of the critical load in bifurcation analysis for incompressible elastic solids
Abstract
A procedure for obtaining a lower bound estimate of the critical load for arbitrary incompressible hyperelastic solids is presented. By considering a lower bound estimate for the Hadamard functional based on the Korn inequality, we establish sufficient conditions for the infinitesimal stability of a distorted configuration. We then determine an optimal lower bound estimate of the critical load in a monotonic loading process and specialize our procedure to the case of homogeneous deformations of incompressible, hyperelastic bodies. We apply our procedure to some representative dead-load boundary value problems for Mooney–Rivlin elastic solids and discuss its effectiveness and handiness for applications by comparing our results to other estimates.
Autore Pugliese
Tutti gli autori
-
FOTI, Pilade , FRADDOSIO, Aguinaldo , MARZANO, Salvatore , PICCIONI, Mario Daniele , FOSDICK, Roger Lee
Titolo volume/Rivista
MATHEMATICS AND MECHANICS OF SOLIDS
Anno di pubblicazione
2014
ISSN
1081-2865
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
7
Ultimo Aggiornamento Citazioni
2017-04-23 03:20:56
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social