Rigid Object Tracking Algorithms for Low-Cost AR Devices
Abstract
Augmented reality (AR) applications rely on robust and efficient methods for tracking. Tracking methods use a computer-internal representation of the object to track, which can be either sparse or dense representations. Sparse representations use only a limited set of feature points to represent an object to track, whereas dense representations almost mimic the shape of an object. While algorithms performed on sparse representations are faster, dense representations can distinguish multiple objects. The research presented in this paper investigates the feasibility of a dense tracking method for rigid object tracking, which incorporates the both object identification and object tracking steps. We adopted a tracking method that has been developed for the Microsoft Kinect to support single object tracking. The paper describes this method and presents the results. We also compared two different methods for mesh reconstruction in this algorithm. Since meshes are more informative when identifying a rigid object, this comparison indicates which algorithm shows the best performance for this task and guides our future research efforts.
Autore Pugliese
Tutti gli autori
-
Garrett T , Debernardis S , Radkowski R , Chang K , Fiorentino M , Uva A , Oliver J
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2014
ISSN
Non Disponibile
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social