An end stage kidney disease predictor based on an artificial neural networks ensemble
Abstract
IgA Nephropathy (IgAN) is a worldwide disease that affects kidneys in human beings and leads to end-stage kidney disease (ESKD) thus requiring renal replacement therapy with dialysis or kidney transplantation. The need for new tools able to help clinicians in predicting ESKD risk for IgAN patients is highly recognized in the medical field. In this paper we present a software tool that exploits the power of artificial neural networks to classify patients’ health status potentially leading to ESKD. The classifier leverages the results returned by an ensemble of 10 networks trained by using data collected in a period of 38 years at University of Bari. The developed tool has been made available both as an online Web application and as an Android mobile app. Noteworthy to its clinical usefulness is that its development is based on the largest available cohort worldwide.
Autore Pugliese
Tutti gli autori
-
Di Noia, Tommaso , Ostuni, Vito Claudio , Pesce, Francesco , Binetti, Giulio , Naso, David , Schena, Francesco Paolo , Di Sciascio, Eugenio
Titolo volume/Rivista
EXPERT SYSTEMS WITH APPLICATIONS
Anno di pubblicazione
2013
ISSN
0957-4174
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
11
Ultimo Aggiornamento Citazioni
2017-04-23 03:20:56
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social