A computational model for Mapreduce job flow
Abstract
Massive quantities of data are today processed using parallel computing frameworks that parallelize computations on large distributed clusters consisting of many machines. Such frameworks are adopted in big data analytic tasks as recommender systems, social network analysis, legal investigation that involve iterative computations over large datasets. One of the most used framework is MapReduce, scalable and suitable for data-intensive processing with a parallel computation model characterized by sequential and parallel processing interleaving. Its open-source implementation -- Hadoop -- is adopted by many cloud infrastructures as Google, Yahoo, Amazon, Facebook. In this paper we propose a formal approach to model the MapReduce framework using model checking and temporal logics to verify properties of reliability and load balancing of the MapReduce job flow.
Autore Pugliese
Tutti gli autori
-
DI NOIA T , Marina Mongiello , Eugenio Di Sciascio
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2014
ISSN
Non Disponibile
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
1
Ultimo Aggiornamento Citazioni
2017-04-23 03:20:56
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social