Holonic Granularity in Intelligent Data Analysis: a Case Study Implementation
Abstract
A granule is any atomic element that is not distinguishable from its peers for manifest features but only for the fact that it represents a singleton (eventually overarching a subset of elements) among other singletons. The importance of granule in Computational Intelligence (CI) is testified by the recent development of Granular Computing (GrC) whose aim is to provide computational methodologies and tools to properly handle information processing at different granularity levels. One important aspect, sometimes dismissed by mainstream research in GrC, is the way interpretations are hidden in observational data at multiple granule scales. It is often the case, in fact, that certain patterns showing coarse statistical evidence at a given observation level have a number of well-defined rules of interpretation at a finer granule level. Currently available CI tools seem to lack on this point. This work reports on the experience gained in developing a CI tool for data analysis named H-GIS (Holonic-Granularity Inference System). The tool is specifically conceived to focus on measurement data interpretation at multiple granularity scales by employing the modeling framework of the so-called holonic systems.
Autore Pugliese
Tutti gli autori
-
Di Lecce V , Calabrese M , Martines C
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2012
ISSN
Non Disponibile
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social