Design and characterization of CMOS multichannel front-end electronics for silicon photomultipliers
Abstract
CMOS multichannel front-end electronics suitable for Silicon Photomultiplier detectors has been developed, mainly intended for medical imaging applications. The architecture of the analog channel, DC coupled to the detector, is based on a full current-mode approach, which allows to achieve a wide input dynamic range of about 70pC while retaining very fast self-triggering capabilities. An 8-channel ASIC with on-chip ADC and a 32-channel prototype have been designed and manufactured, both featuring serial and sparse readout capabilities and a fast-OR circuit, able to generate an high-speed trigger signal from the discriminator outputs of the analog channels. Measurements obtained by coupling the 8-channel prototypes to an injection capacitance have been carried out for characterization purposes. The circuit has been also used to read-out SiPMs coupled to different kinds of light sources, such as a blue LED and a small LYSO scintillation crystal excited by gamma photons with different energies. The results obtained from these tests are presented and discussed, confirming the effectiveness of the proposed front-end architecture.
Autore Pugliese
Tutti gli autori
-
A. ARGENTIERI , F. CORSI , M. FORESTA , MARZOCCA C , A. DEL GUERRA
Titolo volume/Rivista
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT
Anno di pubblicazione
2011
ISSN
0168-9002
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
8
Ultimo Aggiornamento Citazioni
2017-04-22 03:20:59
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social