Multiplicity of Positive and Nodal Solutions for Scalar Field Equations

Abstract

In this paper the question of finding infinitely many solutions to the problem $−Delta u +a(x)u =|u|^{p−2}u$ , in $R^N$, u ∈H^1(R^N), is considered when N≥2, p∈(2, 2N/(N−2)), and the potential a(x) is a positive function which is not required to enjoy symmetry properties. Assuming that a(x)satisfies a suitable “slow decay at infinity” condition and, moreover, that its graph has some “dips”, we prove that the problem admits either infinitely many nodal solutions orinfinitely many constant sign solutions. The proof method is purely variational and allows to describe the shape of the solutions.


Autore Pugliese

Tutti gli autori

  • CERAMI G , MOLLE R , PASSASEO D

Titolo volume/Rivista

JOURNAL OF DIFFERENTIAL EQUATIONS


Anno di pubblicazione

2014

ISSN

0022-0396

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

3

Ultimo Aggiornamento Citazioni

2017-04-23 03:20:56


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile