Weight minimization of truss structures with Big Bang-Big Crunch
Abstract
The Big BangBig Crunch (BBBC) optimization method is a recently developed meta-heuristic algorithm that mimics the process of evolution of the universe. BBBC has been proven very efficient in design optimization of skeletal structures but yet computationally more expensive than classical meta-heuristic algorithms such as genetic algorithms and simulated annealing. To overcome this limitation, the paper presents a novel hybrid formulation of BBBC where the meta-heuristic search is hybridized by including gradient/pseudo-gradient information as a criterion to perform new explosions. Each new trial design is formed by combining a set of descent directions and eventually corrected in order to improve it further. The new BBBC algorithm is successfully tested in two classical weight minimization problems of a spatial 25-bar truss and a planar 200-bar truss.
Autore Pugliese
Tutti gli autori
-
Casavola C , Lamberti L , Pruncu C
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2012
ISSN
Non Disponibile
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social