Weight minimization of truss structures with Big Bang-Big Crunch

Abstract

The Big BangBig Crunch (BBBC) optimization method is a recently developed meta-heuristic algorithm that mimics the process of evolution of the universe. BBBC has been proven very efficient in design optimization of skeletal structures but yet computationally more expensive than classical meta-heuristic algorithms such as genetic algorithms and simulated annealing. To overcome this limitation, the paper presents a novel hybrid formulation of BBBC where the meta-heuristic search is hybridized by including gradient/pseudo-gradient information as a criterion to perform new explosions. Each new trial design is formed by combining a set of descent directions and eventually corrected in order to improve it further. The new BBBC algorithm is successfully tested in two classical weight minimization problems of a spatial 25-bar truss and a planar 200-bar truss.


Tutti gli autori

  • Casavola C , Lamberti L , Pruncu C

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2012

ISSN

Non Disponibile

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile