On the interplay between Lorentzian Causality and Finsler metrics of Randers type
Abstract
We obtain some results in both Lorentz and Finsler geometries, by using a correspondence between the conformal structure (Causality) of standard stationary spacetimes on M = R x S and Randers metrics on S. In particular: (1) For stationary spacetimes: we give a simple characterization of when R x S is causally continuous or globally hyperbolic (including in the latter case, when S is a Cauchy hypersurface), in terms of an associated Randers metric. Consequences for the computability of Cauchy developments are also derived. (2) For Finsler geometry: Causality suggests that the role of completeness in many results of Riemannian Geometry (geodesic connectedness by minimizing geodesics, Bonnet-Myers, Synge theorems) is played by the compactness of symmetrized closed balls in Finslerian Geometry. Moreover, under this condition we show that for any Randers metric R there exists another Randers metric R with the same pregeodesics and geodesically complete. Even more, results on the differentiability of Cauchy horizons in spacetimes yield consequences for the differentiability of the Randers distance to a subset, and vice versa.
Autore Pugliese
Tutti gli autori
-
Caponio E , Javaloyes MA , Sanchez M
Titolo volume/Rivista
REVISTA MATEMATICA IBEROAMERICANA
Anno di pubblicazione
2011
ISSN
0213-2230
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
30
Ultimo Aggiornamento Citazioni
2017-04-23 03:20:56
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social