Infinitesimal and local convexity of a hypersurface in a semi-Riemannian manifold

Abstract

Given a Riemannian manifold (M, g) and an embedded hypersurface H in M, a result by R. L. Bishop states that infinitesimal convexity on a neighborhood of a point in H implies local convexity. Such result was extended very recently to Finsler manifolds by the author et al. in [2]. We show in this note that the techniques in [2], unlike the ones in Bishop’s paper, can be used to prove the same result when (M, g) is semi-Riemannian. We make some remarks for the case when only time-like, null, or space-like geodesics are involved. The notion of geometric convexity is also reviewed, and some applications to geodesic connectedness of an open subset of a Lorentzian manifold are given.


Autore Pugliese

Tutti gli autori

  • Caponio E

Titolo volume/Rivista

SPRINGER PROCEEDINGS IN MATHEMATICS & STATISTICS


Anno di pubblicazione

2013

ISSN

2194-1009

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

2

Ultimo Aggiornamento Citazioni

2017-04-22 03:20:59


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile