An artificial neural network approach for the control of the laser milling process

Abstract

Laser milling (LM) can be classified as a layer manufacturing process in which the material is removed by a laser beam by means of the ablation mechanism. It is a laser machining process which uses a laser beam to produce 3D shapes into a wide variety ofmaterials. It is also known as laser ablation. It shows clear advantages versus the traditional milling such as the unlimited choice of materials, the direct use of computer-aided design structure data, the high geometric flexibility, and the touchless tool. LM requires the selection of optimal machining parameters for the job. Unlike the mechanical milling and themechanical incision, the depth of the single removed layer is chosen at the beginning as input parameter of the process. In LM, the ablated depth depends from the process parameters such as laser power, scan speed, pulse duration, and pulse frequency. This work aims to develop an algorithm that can predict the parameters necessary to execute the material removal with a preset ablation depth. Using the results of an experimental campaign, the laser milling process was modeled by means of a back-propagation artificial neural network. Then, an iterative algorithm, based on the previous trained neural network, permitted to calculate the scanning velocity and pulse frequency that approached for the best the preset ablation depth. The developed approach represents a mean for the rational selection of laser ablation process parameters. It can be performed in an intuitive manner since it uses simple artificial intelligence like the artificial neural network.


Tutti gli autori

  • Campanelli S , Casalino G , Ludovico AD , Bonserio C

Titolo volume/Rivista

INTERNATIONAL JOURNAL, ADVANCED MANUFACTURING TECHNOLOGY


Anno di pubblicazione

2013

ISSN

0268-3768

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

14

Ultimo Aggiornamento Citazioni

2017-04-22 03:20:59


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile