3D Virtual Colonoscopy for Polyps Detection by Supervised Artificial Neural Networks
Abstract
The occurrence of false-positives (FPs) is still an important concern and source of unreliability in computer-aided diagnosis systems developed for 3D virtual colonoscopy. This work presents three different supervised approaches, based on supervised artificial neural networks (ANNs) architectures tested on 16 rows helical multi-slice computer tomography. The performance of the best ANN architecture developed, by using the volumes belonging to only 4 of 7 available nodules diagnosed by expert radiologists as polyps and non-polyps were evaluated in terms of FPs and false-negatives. It revealed good performance in terms of generalization and FPs reduction, correctly detecting all 7 polyps.
Autore Pugliese
Tutti gli autori
-
Bevilacqua, V , De Fano, D , Giannini, S , Mastronardi, G , Paradiso, V , Pennini, M , Piccinni, M , Angelelli, G , Moschetta, M
Titolo volume/Rivista
LECTURE NOTES IN COMPUTER SCIENCE
Anno di pubblicazione
2012
ISSN
1611-3349
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social