Comparison of data-merging methods with SVM attribute selection and classification in breast cancer gene expression
Abstract
DNA microarray data are used to identify genes which could be considered prognostic markers. However, due to the limited sample size of each study, the signatures are unstable in terms of the composing genes and may be limited in terms of performances. It is therefore of great interest to integrate different studies, thus increasing sample size.Results: In the past, several studies explored the issue of microarray data merging, but the arrival of new techniques and a focus on SVM based classification needed further investigation. We used distant metastasis prediction based on SVM attribute selection and classification to three breast cancer data sets.Conclusions: The results showed that breast cancer classification does not benefit from data merging, confirming the results found by other studies with different techniques.
Autore Pugliese
Tutti gli autori
-
BEVILACQUA VITOANTONIO , PAOLO PANNARALE , MIRKO ABBRESCIA , CLAUDIA CAVA , ANGELO PARADISO , STEFANIA TOMMASI
Titolo volume/Rivista
BMC BIOINFORMATICS
Anno di pubblicazione
2012
ISSN
1471-2105
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
17
Ultimo Aggiornamento Citazioni
2017-04-23 03:20:56
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social