Comparison of data-merging methods with SVM attribute selection and classification in breast cancer gene expression

Abstract

DNA microarray data are used to identify genes which could be considered prognostic markers. However, due to the limited sample size of each study, the signatures are unstable in terms of the composing genes and may be limited in terms of performances. It is therefore of great interest to integrate different studies, thus increasing sample size.Results: In the past, several studies explored the issue of microarray data merging, but the arrival of new techniques and a focus on SVM based classification needed further investigation. We used distant metastasis prediction based on SVM attribute selection and classification to three breast cancer data sets.Conclusions: The results showed that breast cancer classification does not benefit from data merging, confirming the results found by other studies with different techniques.


Autore Pugliese

Tutti gli autori

  • BEVILACQUA VITOANTONIO , PAOLO PANNARALE , MIRKO ABBRESCIA , CLAUDIA CAVA , ANGELO PARADISO , STEFANIA TOMMASI

Titolo volume/Rivista

BMC BIOINFORMATICS


Anno di pubblicazione

2012

ISSN

1471-2105

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

17

Ultimo Aggiornamento Citazioni

2017-04-23 03:20:56


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile