Perturbed asymptotically linear problems

Abstract

The aim of this paper is investigating the existence of solutions of the semilinear elliptic problem begin{equation} left{ begin{array}{ll} displaystyle{-Delta u = p(x, u) + varepsilon g(x, u)} & mbox{ in } Omega,\ displaystyle{u=0} & mbox{ on } partialOmega,\ end{array} ight. end{equation} where $Omega$ is an open bounded domain of $R^N$, $varepsiloninR$, $p$ is subcritical and asymptotically linear at infinity and $g$ is just a continuous function. Even when this problem has not a variational structure on $H^1_0(Omega)$, suitable procedures and estimates allow us to prove that the number of distinct crtitical levels of the functional associated to the unperturbed problem is ``stable'' under small perturbations, in particular obtaining multipicity results if $p$ is odd, both in the non--resonant and in the resonant case.


Autore Pugliese

Tutti gli autori

  • BARTOLO R , CANDELA A M , SALVATORE A

Titolo volume/Rivista

ANNALI DI MATEMATICA PURA ED APPLICATA


Anno di pubblicazione

2014

ISSN

0373-3114

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

2

Ultimo Aggiornamento Citazioni

2017-04-22 03:20:59


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile