Analysis of an integro-differential system modeling tumor growth
Abstract
A mathematical model of integro-differential equations is studied to describe the evolution of a heterogeneous population of cancer stem cells and tumor cells. This model has recently been analyzed by Hillen et al., who reduced the analysis to a system of ordinary differential equations to prove the so-called "tumor growth paradox". In this paper we study the reaction-diffusion systems of integro-differential equations and we have the positivity and global existence of solution by an invariant set. The stability of steady states is investigated after having proven that every spatially inhomogeneous pattern disappears by using "energy estimates"
Autore Pugliese
Tutti gli autori
-
MADDALENA L.
Titolo volume/Rivista
APPLIED MATHEMATICS AND COMPUTATION
Anno di pubblicazione
2014
ISSN
0096-3003
ISBN
Non Disponibile
Numero di citazioni Wos
3
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
3
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social