Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth
Abstract
We focus on the morphochemical reaction–diffusion model introduced in Bozzini et al. (2013) and carry out a nonlinear bifurcation analysis with the aim to characterize the shape and the amplitude of the patterns arising as the result of Turing instability of the physically relevant equilibrium. We perform a weakly nonlinear multiple scales analysis, and derive the normal form equations governing the amplitude of the patterns. These amplitude equations allow us to construct relevant solutions of the model equations and reveal the presence of multiple branches of stable solutions arising as the result of subcritical bifurcations. Hysteretic type phenomena are highlighted also through numerical simulations. We show the occurrence of spatial pattern propagation and derive the Ginzburg–Landau equation describing the envelope of the traveling wavefront.
Autore Pugliese
Tutti gli autori
-
Bozzini B. , Gambino G. , Lacitignola D. , Lupo S. , Sammartino M. , Sgura I.
Titolo volume/Rivista
COMPUTERS & MATHEMATICS WITH APPLICATIONS
Anno di pubblicazione
2015
ISSN
0898-1221
ISBN
Non Disponibile
Numero di citazioni Wos
9
Ultimo Aggiornamento Citazioni
28/04/2018
Numero di citazioni Scopus
10
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social