Vehicle parameter estimation using a model-based estimator
Abstract
In the last few years, many closed-loop control systems have been introduced in the automotive field to increase the level of safety and driving automation. For the integration of such systems, it is critical to estimate motion states and parameters of the vehicle that are not exactly known or that change over time. This paper presents a model-based ob- server to assess online key motion and mass properties. It uses common onboard sensors, i.e. a gyroscope and an accelerometer, and it aims to work during normal vehicle man- oeuvres, such as turning motion and passing. First, basic lateral dynamics of the vehicle is discussed. Then, a parameter estimation framework is presented based on an Extended Kalman filter. Results are included to demonstrate the effectiveness of the estimation approach and its potential benefit towards the implementation of adaptive driving as- sistance systems or to automatically adjust the parameters of onboard controllers.
Autore Pugliese
Tutti gli autori
-
Reina G. , Paiano M. , Blanco-Claraco J.
Titolo volume/Rivista
MECHANICAL SYSTEMS AND SIGNAL PROCESSING
Anno di pubblicazione
2017
ISSN
0888-3270
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
5
Ultimo Aggiornamento Citazioni
22/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social