UNIFORM MEAN ERGODICITY OF C_0-SEMIGROUPS IN A CLASS OF FRÉCHET SPACES
Abstract
Let $(T(t))_{tgeq 0}$ be a strongly continuous $C_0$-semigroup of bounded linear operators on a Banach space $X$ such that $lim_{ttoinfty}||T(t)||/t = 0$. Characterizations of when $(T(t))_{tgeq 0}$ is uniformly mean ergodic, i.e., of when its Cesàro means $r^{-1}int_0^r T(s)ds$ converge in operator norm as $to infty$, are known. For instance, this is so if and only if the infinitesimal generator $A$ has closed range in $X$ if and only if $lim_{lambdato 0^+}lambda R(lambda, A)$ exists in the operator norm topology (where $R(lambda,A)$ is the resolvent operator of $A$ at $lambda$). These characterizations, and others, are shown to remain valid in the class of quojection Fréchet spaces, which includes all Banach spaces, countable products of Banach spaces, and many more. It is shown that the extension fails to hold for all Fréchet spaces. Applications of the results to concrete examples of $C_0$-semigroups in particular Fréchet function and sequence spaces are presented.
Autore Pugliese
Tutti gli autori
-
A.A. Albanese , J. Bonet , W.J. Ricker
Titolo volume/Rivista
FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI
Anno di pubblicazione
2014
ISSN
0208-6573
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
2
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social