Thermal and mechanical performance of rigid polyurethane foam added with commercial nanoparticles
Abstract
This study investigates the effects of commercial nanoparticles on thermal and mechanical performance of rigid polyurethane foams. Two different types of nanoparticles are considered as fillers, spherical titania and rod-shaped halloysite clay nanotubes. The aim of this study was to produce rigid polyurethane foams modified with titania nanocrystals and nanohalloysite in order to obtain polyurethanes with improved properties. The laboratory scale-up will be suitable for the production in many branches of industry, such as construction and automotive production. In particular, these foams, added with commercial nanoparticles, characterized by better thermal and mechanical properties, are mainly used in construction for thermal insulation of buildings. The fillers were dispersed in the components, bringing rates up to 10%. In these investigations, the improvement of the thermal properties occurs by adding nanoparticles in the range 4–8% of titania and halloysite. The mechanical properties instead have been observed an improvement starting from 6% of nanoparticles addition. All data are in agreement with scanning electron microscope observations that shown a decrease in the average cell size and an increase in the cell density by adding nanoparticles in foams.
Autore Pugliese
Tutti gli autori
-
Lorusso C. , Vergaro V. , Conciauro F. , Ciccarella G. , Congedo P.M.
Titolo volume/Rivista
NANOMATERIALS AND NANOTECHNOLOGY
Anno di pubblicazione
2017
ISSN
1847-9804
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
0
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social