The inverse scattering transform for the defocusing nonlinear Schrödinger equation with nonzero boundary conditions
Abstract
A rigorous theory of the inverse scattering transform for the defocusing nonlinear Schrödinger equation with nonvanishing boundary values is presented. The direct problem is shown to be well posed for potentials in a suitable functional class, for which analyticity properties of eigenfunctions and scattering data are established. The inverse scattering problem is formulated and solved both via Marchenko integral equations, and as a Riemann-Hilbert problem in terms of a suitable uniform variable. The asymptotic behavior of the scattering data is determined and shown to ensure the linear system solving the inverse problem is well defined. Finally, the triplet method is developed as a tool to obtain explicit multisoliton solutions by solving the Marchenko integral equation via separation of variables.
Autore Pugliese
Tutti gli autori
-
F. Demontis , B. Prinari , C. van der Mee , F. Vitale
Titolo volume/Rivista
STUDIES IN APPLIED MATHEMATICS
Anno di pubblicazione
2013
ISSN
1467-9590
ISBN
Non Disponibile
Numero di citazioni Wos
17
Ultimo Aggiornamento Citazioni
28/04/2018
Numero di citazioni Scopus
17
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social