Telai in C.A. con F.R.C. nelle zone di nodo - valutazione del fattore di struttura
Abstract
According to the capacity design approach, reinforced concrete frame structures must have high ductility, which is achieved by adopting a high amount of transverse reinforcement in dissipative regions. The use of Fibre Reinforced Concrete (FRC) can solve the problem due to the development of significant residual tensile strength. To date, it is widely known that the use of FRC results in an improvement of the structural performance for elements subjected to gravitational and cyclic loads. Benefits can be achieved in terms of shear strength, ductility, cracking behaviour, energy dissipation, tolerance to damage and fatigue. However, the available studies on FRC and new HPFRC (High Performance Fibre Reinforced Concrete) focus on individual members only. This paper aims to investigate the overall effects of using FRC materials in dissipative regions of RC framed regular structures. To this scope, a numerical investigation is run to simulate the seismic behaviour of plane RC frames with or without FRC in inelastic zones and beam-column joints. The frames are analysed by means of non-linear static analysis with distributed plasticity and fibre sections. The behaviour of simple and mixed frames is compared in terms of capacity curves and, therefore, behaviour factor q. The variables taken into examination are investigated by means of statistical analysis (ANOVA and Tuckey test). Mainly the adoption of fibre reinforced concrete in dissipative zones of mixed frames proves an increase in the behaviour factor q compared to concrete frames ordinary
Autore Pugliese
Tutti gli autori
-
Candido L. , Lupo A. , Micelli F.
Titolo volume/Rivista
STRUCTURAL
Anno di pubblicazione
2016
ISSN
2282-3794
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social