Systems of conservation laws with third-order Hamiltonian structures

Abstract

We investigate $n$-component systems of conservation laws that possess third-order Hamiltonian structures of differential-geometric type. % Examples include equations of associativity of two-dimensional topological % field theory (WDVV equations). and various equations of Monge-Amp`ere % type. The classification of such systems is reduced to the projective classification of linear congruences of lines in $mathbb{P}^{n+2}$ satisfying additional geometric constraints. Algebraically, the problem can be reformulated as follows: for a vector space $W$ of dimension $n+2$, classify $n$-tuples of skew-symmetric 2-forms $A^{alpha} in Lambda^2(W)$ such that $$ phi_{beta gamma}A^{beta}wedge A^{gamma}=0, $$ for some non-degenerate symmetric $phi$.


Autore Pugliese

Tutti gli autori

  • Ferapontov E. V. , Pavlov M. V. , Vitolo R.

Titolo volume/Rivista

LETTERS IN MATHEMATICAL PHYSICS


Anno di pubblicazione

2018

ISSN

0377-9017

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile