Stimulation by pro-apoptotic valinomycin of cytosolic NADH/cytochrome c electron transport pathway-Effect of SH reagents
Abstract
Intrinsic and extrinsic apoptosis are both characterised by the presence of cytochrome c (cyto-c) in the cytosol. We present data on the extra-mitochondrial NADH oxidation catalysed by exogenous (cytosolic) cyto-c, as a possible answer to the paradox of apoptosis being an energy-dependent program but characterized by the impairment of the respiratory chain. The reduction of molecular oxygen induced by the cytosolic NADH/cyto-c pathway is coupled to the generation of an electrochemical proton gradient available for ATP synthesis. Original findings show that SH reagents inhibit the NADH/cyto-c system with a conformational change mechanism. The mitochondrial integrity-test of sulfite oxidase unequivocally demonstrates that this enzyme (120kDa) can be released outside but exogenous cyto-c (12.5kDa) does not permeate into mitochondria. Valinomycin at 2nM stimulates both the energy-dependent reversible mitochondrial swelling and the NADH/cyto-c oxidation pathway. The pro-apoptotic activity of valinomycin, as well as to the dissipation of membrane potential, can be also ascribed to the increased activity of the NADH/cyto-c oxidation pathway useful as an additional source of energy for apoptosis. It can be speculated that the activation of the NADH/cyto-c system coupled to valinomycin-induced mitochondrial osmotic swelling may represent a strategy to activate apoptosis in confined solid tumours.
Autore Pugliese
Tutti gli autori
-
Lofrumento D.D. , La Piana G. , Palmitessa V. , Abbrescia D.I. , Lofrumento N.E.
Titolo volume/Rivista
THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY
Anno di pubblicazione
2016
ISSN
1357-2725
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
0
Ultimo Aggiornamento Citazioni
26/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social