Spatio-temporal organization in alloy electrodeposition: a morphochemical mathematical model and its experimental validation
Abstract
This paper proposes a novel mathematical model for the formation of spatio-temporal patterns in electrodeposition. At variance with classical modelling approaches that are based on systems of reaction–diffusion equations just for chemical species, this model accounts for the coupling between surface morphology and surface composition as a means of understanding the formation of morphological patterns found in electroplating. The innovative version of the model described in this work contains an original, flexible and physically straightforward electrochemical source term, able to account for charge transfer and mass transport: adsorbate-induced effects on kinetic parameters are naturally incorporated in the adopted formalism. The relevant nonlinear dynamics is investigated from both the analytical and numerical points of view. Mathematical modelling work is accompanied by an extensive, critical review of the literature on spatio-temporal pattern formation in alloy electrodeposition: published morphologies have been used as abenchmark for the validation of our model. Moreover, original experimental data are presented—and simulated with our model—on the formation of broken spiral patterns in Ni– P–W–Bi electrodeposition.
Autore Pugliese
Tutti gli autori
-
B. Bozzini , D. Lacitignola , I. Sgura
Titolo volume/Rivista
JOURNAL OF SOLID STATE ELECTROCHEMISTRY
Anno di pubblicazione
2013
ISSN
1432-8488
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
23
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social