SHORT-TERM POWER FORECASTING BY STATISTICAL METHODS FOR PHOTOVOLTAIC PLANTS IN SOUTH ITALY

Abstract

Statistical methods based on Multiregression Analysis and Artificial Neural Networks (ANNs) have been developed in order to predict power production of a 960 kWp grid-connected photovoltaic (PV) plant in the campus of the University of Salento, Italy. The neural network has been used only as a statistic model based on time series of PV power and meteorological variables, as module temperature, ambient temperature and irradiance on module’s plain. In particular, a sensitivity analysis has been carried out in order to find those weather parameters with the best impact on the forecasting.


Tutti gli autori

  • M.G. De Giorgi , P.M. Congedo , M. Malvoni , M. Tarantino

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2013

ISSN

Non Disponibile

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

11

Ultimo Aggiornamento Citazioni

28/04/2018


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile