Root polytope and partitions
Abstract
Given a crystallographic reduced root system and an element γ of the lattice generated by the roots, we study the minimum number |γ|, called the length of γ , of roots needed to express γ as sum of roots. This number is related to the linear functionals presenting the convex hull of the roots. The map γ → |γ| turns out to be the upper integral part of a piecewise-linear function with linearity domains the cones over the facets of this convex hull. In order to show this relation, we investigate the integral closure of the monoid generated by the roots in a facet. We study also the positive length, i.e., the minimum number of positive roots needed to write an element, and we prove that the two notions of length coincide only for the types A and C.
Autore Pugliese
Tutti gli autori
-
R. Chirivì
Titolo volume/Rivista
JOURNAL OF ALGEBRAIC COMBINATORICS
Anno di pubblicazione
2014
ISSN
0925-9899
ISBN
Non Disponibile
Numero di citazioni Wos
2
Ultimo Aggiornamento Citazioni
28/04/2018
Numero di citazioni Scopus
4
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social